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Abstract. We study learning from examples by higher-order perceptrons, which realize
polynomially separable rules. The model complexities of the networks are made ‘tunable’
by varying the relative orders of different monomial terms. We analyse the learning curves of
higher-order perceptrons when the Gibbs algorithm is used for training. It is found that learning
occurs in a stepwise manner. This is because the number of examples needed to constrain the
corresponding phase-space component scales differently.

1. Introduction

The multilayer perceptron [1–3] consists of a number of processing units called neurons,
which by themselves are only capable of learning linearly separable rules. While multilayer
perceptrons with a large number of neurons have been proven to be universal function
approximators, due to practical reasons there have been growing interests in utilizing
different types of processing units. Radial basis function networks, for example, use a
processing element which activates according to the distance from its centre to the pattern
vector. For the McCulloch–Pitts neuron, the decision surface is a hyperplane orthogonal to
the ‘weight vector’ of the neuron.

In this paper we consider the so-calledhigher-order neurons[4–6], which are a
generalization of the conventional threshold units. Unlike the case of first-order neurons, the
decision boundaries are not restricted to hyperplanes, and hence higher-order neurons are
capable of learning rules more complex than linearly separable ones. Processing elements,
which are capable of learning up tomth-order polynomially separable rules, are called
mth-order neurons.

The higher-order multilayer perceptron, which is a layered feedforward network
consisting of higher-order neurons, is known to have various interesting and useful
properties. Among others, theinvariance constraints, such as the requirement that the
same patterns should be recognized as such regardless of their locations or orientations, can
be handled directly in higher-order networks [7]. Since this invariance constraint is such
an important rule, and yet hard to incorporate in practical pattern recognition problems [3],
the higher-order neural networks have been increasingly studied [4–13] despite the fact that
the higher-order units suffer from the so-calledcurse of dimensionality.

† Present address: Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem
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The increased cost of using higher-order neurons is also expected to be compensated by
the fact that the increased computational power at the neuron level can reduce the overall
complexity of the network as a whole. The classic example is the XOR problem, which
cannot be implemented in a single first-order neuron (‘simple perceptron’) and was believed
for a long time to be an indication that neural networks had very limited capability [14].
This XOR rule can be learnt by introducing one hidden layer. A second-order neuron with
two input nodes is, however, capable of learning all of the 16 Boolean functions of two
binary input variables including the XOR.

In general, a singlemth-order neuron canmemorizeany Boolean function with up tom
input variables. This is another advantage of using higher-order units. In the conventional
multilayer approach, one is never certain of the complexity of the rules which the given
architecture of a multilayer perceptron can handle. In using higher-order neural networks,
however, one can start with a low-order neuron and increase its order gradually [12] instead
of adding more ‘hidden’ nodes. In this way one can always deal with a well-defined class
of rules, that is, polynomially separable rules of specified orders.

Even though this is by no means the only possible use of higher-order networks, we
limit ourselves mainly to such uses of the networks consisting of single neurons, which
we simply callhigher-order perceptronsin this work. This is essentially a neural-network
version of the familiar paradigm of curve fitting with polynomial functions.

This paper is organized as follows. We will first present the definitions of the higher-
order perceptron and the polynomially separable rule in section 2. There are two possible
choices in combining different order monomial terms in a single processing element: one
giving equal importance to eachweight and the other giving equal importance to each
monomial classof weights. In this work we investigate the latter choice, which appears
to be more natural. The storage property of higher-order perceptrons with the first choice
was studied by Kohring [6] and it was found that they exhibited no essential novelties over
first-order networks.

The storage capacity is computed in section 3 using the statistical mechanics formalism
developed first by Gardner [15] and later extended by many authors [16–22]. Since we
are interested in the novel features by going beyond the first order, we will restrict our
calculation to second-order perceptrons. The results for general cases will be given as
its straightforward extrapolation without repeating the calculations. It is shown that the
complexity of higher-order networks is essentiallytunableby adjusting the relative weight
parameters. In section 4, the learning property of the higher-order perceptron will be
investigated for both fixed and tunable complexity networks. In particular, the generalization
errors will be calculated, also in the framework of the replica method. Finally, some open
questions and directions for future research will be given in section 5.

2. Higher-order perceptrons

Themth-order perceptron is defined as the following function for anN -dimensional input
vector,x = {x1, . . . , xN },

y = g
( ∑

06i16···6im6N
wi1...imxi1 . . . xim

)

= g
(
w(0) +

N∑
i=1

w
(1)
i xi + · · · +

∑
16i1<···<im6N

w
(m)
i1...im

xi1 . . . xim

)
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wherex0 is defined as 1 andg(·) is a transfer function, which in this work is taken to be
a threshold function,g(x) = sgn(x). We will only consider binary patterns in this paper.
That is, the input variablesxi ’s are restricted to±1 for 16 i 6 N . Note that the ‘weight
matrix’, wi1...im , consists of submatrices of different symmetries,w

(k)
i1...ik

with k = 0, . . . , m.
The single-element matrix,w(0), is what is usually called the bias andw(1) is the weight
vector. The diagonal parts of the submatrices, those elements which have the same indices
for more than one position, are all zero, since these parts are moved to the lower-order
monomial contributions due to the fact that(xi)2 = 1.

A submatrix ofkth order has

dk =
(
N

k

)
(1)

terms and there are

Dm =
m∑
k=0

dk

adjustable weights in total.Dm is called the degree of freedom of themth-order perceptron.
One can easily see that the perceptron function given above can realize a class of rules

whose decision boundaries formmth-order polynomial hypersurfaces in theN -dimensional
pattern space ∑

06i16···6im6N
wi1...imxi1 . . . xim = 0.

Such class of rules are called thepolynomially separable rules. The separating capacities
of these rules have been derived using combinatorial geometry in a very general context by
Cover [23]. The results show that the maximum storage capacity of a neural network with
Dm degrees of freedom is 2Dm. In the next section we shall see, however, that we can
make this numbertunableby imposing separate normalization for each monomial class of
weights, which will be explained later.

It might initially appear that the highest-order monomial term dominates the summation
inside the transfer functiong(·) due to the combinatorics. However, this is not always the
case, especially for sufficiently well-trained networks. For example, when the complexity
of the target rule warrants only up to them′th-order term withm′ < m, the weights of the
terms higher thanm′th order will vanish. We can also control the relative contributions of
each monomial term to the final output by using separate normalization for each weight
submatrix, which we do in this work. This can be viewed as a straightforward extension of
the conventional paradigm of using first-order neurons, since the bias term and each weight
are normally treated differently. By introducing a set of new parameters,γi , controlling the
relative weight for each monomial term, we rewrite the perceptron function as follows

y = g
( m∑
k=0

γk√
dk

∑
16i1<···<ik6N

w
(k)
i1...ik

xi1 . . . xik

)
.

We impose the following spherical constraint for each monomial class of weightsw
(k)
i1...ik

,∑
16i1<···<ik6N

(w
(k)
i1...ik

)2 = dk (2)

for all 0 6 k 6 m. Note that the normalization is done over the number of independent
weights, so that the typical value of each weight is of order unity before learning takes
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place. The relative weight parameters are in turn normalized as follows

m∑
k=0

(γk)
2 = 1.

In this paper we shall callγk ’s tuning parameters.
Within this set-up of the problem, one can easily see that all the monomial terms

decouple from each other in the sense that the average of the product of two different
monomial terms over all the possible example patterns is equal to the product of their
averages, which vanishes due to theZ2 symmetry of each input variable. Hence, it is
sufficient to retain only two monomial classes of weights in the argument of the transfer
function in order to illustrate general characteristics of the higher-order perceptron. In this
paper we consider a second-order perceptron without a bias term, whose outputy is given
by

y = g
(
γ1√
N

N∑
i=1

Wixi + γ2√
N(N−1)

2

N∑
i<j

Yij xixj

)
(3)

where we have introduced two new symbolsWi and Yij for w(1)i andw(2)ij , respectively.
This equation is shown graphically in figure 1 for the case ofN = 3. As is apparent from
the figure, the higher-order perceptron can be viewed as a three-layer network with product
units in the first layer, linear units with non-overlapping receptive fields in the second layer,
and threshold units in the third layer.

3. Storage capacity

Let us suppose that a data set ofp random patterns, which are pairs ofN input and 1 output
binary numbers, are given to a network. Ifp is small enough, the network can learn, or
become able to classify, these patterns by adjusting the decision boundaries appropriately.
However, asp increases, some stored patterns lie closer and closer to the boundaries, and
beyond a certain critical value the patterns will no longer be completely separable by this
polynomial hypersurface. We define the number of patterns,pc, at which this happens as
the separating capacity orstorage capacityof the network. If we think of these random
patterns as input–output pairs from a certain Boolean function, the storage capacity can also
be viewed as the upper bound of the complexity of the Boolean functions realizable by the
given neural network, and hence it represents themodel complexity.

In this section we calculate the storage capacity of the second-order perceptroná la
Gardner [15]. The output of the network is given by (3), which is rewritten here as

y(x) = sgn(γ1u(x)+ γ2v(x))

where the argument of the transfer function has been divided into two terms, defined as

u(x) =
√

1

N

N∑
i=1

Wixi

v(x) =
√

2

N(N − 1)

N∑
i<j

Yij xixj .
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Figure 1. An ‘anatomical’ view of a second-order perceptron with three input nodes (N = 3).
The outermost box represents the usual ‘blackbox’ view of the perceptron, or the neuron, while
the two inner boxes represent the first- and second-order monomial terms, respectively. The
open circles perform summation of the incoming arguments while the dotted circles perform
product. There are, in general,dk dotted circle elements for thekth-order monomial class of
weights. The double circle can be viewed as the conventional first-order threshold unit. All the
arrows without labels simply indicate the flow of the computation.

The weight vectors,Wi andYij , are separately normalized to satisfy the spherical constraints,
(2)

N∑
i=1

W 2
i = N (4a)

∑
i<j

Y 2
ij =

N(N − 1)

2
. (4b)

The relative weights of the two monomial terms are assumed to be constant, with the
following constraint

(γ1)
2+ (γ2)

2 = 1. (5)

Hence the weight space is the direct product of two hyperspheres with fixed radii. The
relative volumes of these two ‘component’ spaces are controlled by (4a)–(5). It should be
noted that this choice of phase space reflects our prior knowledge, or hypothesis, concerning
the class of rules to which the target rule belongs.

Now we begin our calculation of the storage capacity by evaluating theversion space,
which is the volume of the weight space in which the following equations,

yµ = y(xµ)
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are satisfied for all input–output pairs of examples,{xµ, yµ;µ = 1, . . . , p}. It is given by

V =
∫

dµ(W ) dµ(Y )
∏
µ

θ(yµ(γ1u
µ + γ2v

µ))

where

uµ = u(xµ)
vµ = v(xµ)

and the weight space measure is

dµ(W ) =
∏
i

dWi δ

(∑
i

W 2
i −N

)
dµ(Y ) =

∏
i<j

dYij δ

(∑
Y 2
ij −

N(N − 1)

2

)
.

The typical size of this volume is then obtained by averaging lnV over all realizations
of the input–output pairs at constantp. This is done through thereplica method,

〈〈lnV 〉〉 = lim
n→0

1

n
ln〈〈V n〉〉

in which one needs to calculate the total permissible volume ofn replicated systems,

〈〈V n〉〉 =
n∏
σ=1

∫
dµ(W σ ) dµ(Y σ )

〈〈∏
µ

θ(yµ(γ1u
µ + γ2v

µ))

〉〉
. (6)

Hereafter, the quenched average〈〈 〉〉 is taken over the example pairs, that is, overxµ’s,
whose distribution is assumed to be completely random,

P(xi) = 1
2δ(xi − 1)+ 1

2δ(xi + 1) i = 1, . . . , N (7)

and overyµ’s, whose distribution is determined by the presumed rule which is, in this
section, assumed to be selected at random for the purpose of calculating storage capacity.
Hence

P(y|x) = 1
2δ(y − 1)+ 1

2δ(y + 1)

whereδ(x) ≡ δx0 is the Kronecker delta.
The quenched average of (6) is taken through the standard method [15], giving

〈〈lnV 〉〉 = p
∫

Dt ln

[ ∫ ∞
0

dr√
2π(1− q)e−

1
2
(r+t√q)2

1−q

]
+ N

2

[
ln(1− q1)+ q1

1− q1

]
+N(N − 1)

4

[
ln(1− q2)+ q2

1− q2

]
(8)

where the overlap order parameter

q = γ 2
1 q1+ γ 2

2 q2 (9)

is introduced under the replica symmetric assumption

q1 = 1

N

〈〈∑
i

Wσ
i W

ν
i

〉〉
(10a)

q2 = 2

N(N − 1)

〈〈∑
i<j

Y σij Y
ν
ij

〉〉
(10b)
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whereσ 6= ν. In (8), t is a Gaussian random variable with unit variance, and the integration
measure Dt is defined as

Dt = 1√
2π

e−
1
2 t

2
dt.

By extremizing〈〈lnV 〉〉 with respect toq1 andq2, we obtain the following saddle-point
equations,

pγ 2
1√

2π

∫
Dt

[
H

(
t
√
q√

1− q
)]−1

te−
1
2

q

1−q t
2 = N q1

√
q(1− q)3/2
(1− q1)2

pγ 2
2√

2π

∫
Dt

[
H

(
t
√
q√

1− q
)]−1

te−
1
2

q

1−q t
2 = N(N − 1)

2

q2
√
q(1− q)3/2
(1− q2)2

where

H(x) =
∫ ∞
x

Dy = 1

2
erfc

(
x√
2

)
. (11)

At the maximum storage, the volume of the version space becomes 0 by definition, and
the order parameterq becomes 1. Hence, in order to obtain the storage capacity, we take
the limit q → 1, which is somewhat problematic due to the presence of two overlap order
parametersq1 and q2. As it turns out,q1 first approaches 1 at aroundp ∼ d1 = N , but
the volume of the version space remains finite. Only when a number of examples of order
d2 = N(N − 1)/2 are used doesq2, and hence the totalq approach 1, at which point the
total volume of the version space shrinks to zero. We obtain the following storage capacity
for the second-order perceptron,

pc = 2

[
γ1

√
N + γ2

√
N(N − 1)

2

]2

. (12)

When eitherγ1 = 0 or γ2 = 0, this agrees with Cover’s finding [23], namely, that the
storage capacity is twice the number of the free weights in the network. Note thatpc varies
from 2N to N(N − 1) asγ1 andγ2 change. When bothγ1 andγ2 are of order unity, the
storage capacity is of orderN(N − 1)/2 and is continuously tunable depending onγ2.

The reason why our result, (12), predicts a capacity less than the optimal, 2× N(N+1)
2 , is

that we have imposed the separate normalization condition for each monomial term in the
argument of the transfer function. Hence, the decision boundary is hyperquadric surfaces
with strong hyperplanar shape depending on the magnitude ofγ2. This tunability of model
complexity can be very useful in many situations despite the fact that it is achieved in the
expense of its storage capability. One such example in the context of learning will be the
next theme of this paper.

This result can be easily extended to an arbitrary order higher-order perceptron with
multiple monomial terms as long as its order is much smaller than the number of input
nodes. In general, for anmth-order perceptron withm� N ,

y = sgn

( m∑
k=0

γk√
dk

∑
i1<···<ik

w
(k)
i1...ik

xi1 . . . xik

)
(13)

the storage capacity is given by

pc = 2

[ m∑
k=0

γk
√
dk

]2

wheredk was defined in (1).
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4. Gibbs learning of polynomially separable rules

We shall now investigate the generalization ability of a second-order perceptron. We assume
that the target rule is learnable in principle. That is, we train the network with example
sets generated by a presumed teacher network which has the same architecture as that of
the student. This idea has been used by many authors [16–21].

Multilayer perceptrons are usually trained by so-calledback-propagation[4], which is
a gradient descent algorithm in the error landscape in the weight space. The error, or more
precisely thetraining error, is defined as the squared difference between the student’s and
teacher’s outputs for a given set of inputs. The goal of learning in neural networks is,
however, not to minimize the error for a given example set but to minimize the total error
for all possible inputs. This is called thegeneralization errorand is defined as the expected
error over the distribution of all possible inputs.

Unlike the training error, the generalization error is not ‘observable’. This is one
of the essential difficulties in neural-network learning; while our goal is to minimize the
generalization error, the only available information is the training error for a subset of all
possible inputs. Although it is known that the training error is uniformly convergent to
the generalization error in the limit of an infinite number of examples [2], this is usually a
very important issue in practical situations, in which only a finite number of examples are
normally available.

In this section we investigate the generalization ability of a second-order perceptron
when it is trained throughGibbs learning, which is a stochastic version of the back-
propagation with a finite level of noise. It is known that Gibbs learning relaxes the system
into an equilibrium, in which the weights follow the Gibbs distribution according to the
training error. Hence, by studying the equilibrium properties of the weight space, one can
gain a great deal of information concerning various aspects of learning.

The student and the teacher networks are supposed to perform the following functions:

y = sgn(γ1u+ γ2v)

yt = sgn(γ t1u
t + γ t2vt )

where the superscriptt indicates that they are teacher variables. Theu’s andv’s, defined
earlier, are given here for convenience:

u = 1√
N

N∑
i=1

Wixi

ut = 1√
N

N∑
i=1

Wt
i xi

v =
√

2

N(N − 1)

N∑
i<j

Yij xixj

vt =
√

2

N(N − 1)

N∑
i<j

Y tij xixj .

Wi ’s andYij ’s for both student and teacher are continuous weights with spherical constraints
as before,

N∑
i=1

W 2
i = N
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N∑
i=1

(W t
i )

2 = N
∑
i<j

Y 2
ij =

N(N − 1)

2∑
i<j

(Y tij )
2 = N(N − 1)

2

and again we impose the following constraints on theγ ’s:

(γ1)
2+ (γ2)

2 = 1

(γ t1)
2+ (γ t2)2 = 1.

Since the output is binary, we define the error function as

ε(γ2,W ,Y ;x) = θ(−(γ1u+ γ2v)(γ
t
1u

t + γ t2vt )).
Then the training error is given by

et (γ2,W ,Y ) = 1

p

p∑
µ=1

ε(γ2,W ,Y ;xµ)

and the generalization error by

eg(γ2,W ,Y ) = 〈ε(γ2,W ,Y ;x)〉P(x)
whereP(x) is the distribution of inputs, which is normally assumed to be knowna priori
and is set to be isotropic, (7), in this work.

We shall discuss in this paper two different learning schemes of higher-order perceptrons.
First, we study the scheme where tuning parameters,γ ’s, of the student network are
predetermined or ‘quenched’ and hence its model complexity is fixed. In this scheme, we
assume that the model complexity is the same as the rule complexity (γ2 = γ t2) and hence
the teacher’s rule is exactly learnable. Second, we investigate a different learning scheme
in which the model complexity is adjustable through adaptation of the tuning parameters.

The partition function takes slightly different forms for these two learning schemes.
First, when the model complexity is fixed, the partition function is given as usual:

Z =
∫

dµ(W ) dµ(Y ) e−pβet (γ2,W ,Y )

whereβ−1 represents the training noise. Second, when the model complexity is tunable,
we also need to integrate over the distributions of the tuning parameters:

Z =
∫

dµ(γ2) dµ(W ) dµ(Y ) e−pβet (γ2,W ,Y )

whereγ2 is integrated from 0 to 1, that is,

dµ(γ2) = dγ2 θ(γ2)θ(1− γ2).

The typical distributions are then obtained by averaging lnZ over all possible example
sets, which is done through the replica method as in the calculation of the storage capacity

〈〈lnZ〉〉 = N

2

[
q1− R2

1

1− q1
+ ln(1− q1)

]
+ N(N − 1)

4

[
q2− R2

2

1− q2
+ ln(1− q2)

]
+2p

∫ ∞
0

Dz
∫

Dt ln

[
e−β + (1− e−β)H

(√
q − R2t − Rz√

1− q

)]
(14)
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where the mutual overlap order parameter between replicas,q, is defined in the same way
as in the previous section, (9)–(10b), and the overlap between a replica and the teacher is
defined as

R = γ1γ
t
1R1+ γ2γ

t
2R2

where, again under the replica symmetric ansatz,

R1 = 1

N

〈〈 N∑
i=1

Wt
i W

σ
i

〉〉
R2 = 2

N(N − 1)

〈〈∑
i<j

Y tij Y
σ
ij

〉〉
.

H(·) was defined in (11).
Now we discuss the results of this calculation for the two learning schemes.

4.1. Fixed complexity

The most probable state of the system is obtained by extremizing the free energy, (14), with
respect to the order parameters,q andR.

γ1γ
t
1pT = N

(1− q)1/2
(1− q1)2

(q − R2)1/2[(q1− R2
1)(1− q)+ RR1(1− q1)] (15)

γ1γ
t
1pZ = N

(1− q)1/2
(1− q1)2

[(1− R2)R1(1− q1)− R(q1− R2
1)(1− q)] (16)

γ2γ
t
2pT =

N(N − 1)

2

(1− q)1/2
(1− q2)2

(q − R2)1/2[(q2− R2
2)(1− q)+ RR2(1− q2)] (17)

γ2γ
t
2pZ =

N(N − 1)

2

(1− q)1/2
(1− q2)2

[(1− R2)R2(1− q2)− R(q2− R2
2)(1− q)] (18)

where

T =
√

2

π

∫ ∞
0

Dz
∫ ∞
−∞

Dt
e−

1
2 s

2
t

(eβ − 1)−1+H(s)

Z =
√

2

π

∫ ∞
0

Dz
∫ ∞
−∞

Dt
e−

1
2 s

2
z

(eβ − 1)−1+H(s)
and

s =
√
q − R2t − Rz√

1− q .

These equations are solved numerically forγ2 = γ t2. In this case, the teacher’s rule is
completely realizable in principle and the generalization error will approach zero as the
number of examples increases. The generalization curve is obtained through the following
identity [17] in the thermodynamic limit:

eg(p) = 1

π
cos−1R∗

whereR∗ is the solution of the saddle-point equations, (15)–(18), at givenp.
The results show that the learning occurs in a stepwise manner. The first-order part of

the phase space is completely constrained atp ∼ d1 = N and complete or near-complete
learning takes places only afterp ∼ d2 = N(N −1)/2 examples are used for training. This
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Figure 2. Generalization error as a function of the number of training examples. The number
of examples,p, is normalized byd1 = N for the left curve and byd2 = N(N − 1)/2 for the
right one. 1/

√
2 is used for bothγ1 andγ2 and the training temperature is set toβ = 10. The

asymptotic value of the first order regime is1
π

cos−1( 1
2) ≈ 0.33.

is shown in figure 2 forγ1 = γ2 = 1√
2
. The numbers of examples are normalized byN

for the curve on the left-hand side and byN(N − 1)/2 for the other one. The left curve
asymptotically approaches1

π
cos−1( 1

2) ≈ 0.33, indicatingq1 = R1 = 1 as p

N
→∞.

4.2. Adaptable complexity

We now consider the learning scheme in which one trains the tuning parameters as well as
the weights. Since we would like to pick asinglebest student, we also extremize the free
energy overγ2. Then, in addition to (15)–(18), we have one more stationary condition:[
(γ t1γ2q1− γ1γ

t
2q2)

1

(1− q)
1− R2

(q − R2)1/2
− 2(γ t1γ2R1− γ1γ

t
2R2)

R

(q − R2)1/2

]
T

−
[
(γ t1γ2q1− γ1γ

t
2q2)

1

(1− q)R + 2(γ t1γ2R1− γ1γ
t
2R2)

]
Z = 0. (19)

Note that its solution should lie between 0 and 1, by definition.
One can easily see that the following equations

γ t1

γ1
q1 = γ t2

γ2
q2

γ t1

γ1
R1 = γ t2

γ2
R2

constitute a solution. These equations impose strong constraints on the solutions ofq ’s and
R’s. First, one can easily see that

q1

q2
= R1

R2
.
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Furthermore, sinceq2 = R2 = 0 in the regimep ∼ N (it follows from (15)–(18), as in the
previous case), one concludes thatγ1 = 1 andγ2 = 0. Therefore the network behaves like a
first-order perceptron when there are only sufficient number of examples which can be used
for the training of the first-order monomial term. It should be noted that this minimizes the
generalization error,

eg = 1

π
cos−1(γ1γ

t
1R1+ γ2γ

t
2R2).

As the number of examples grows, the network complexity increases accordingly. This is
an interesting result because one might have expectedγ1 = γ t1 andγ2 = γ t2 for all p since
it ‘matches’ their complexities. Asp increases to infinity, all order parameters become 1,
and henceγ1 = γ t1 andγ2 = γ t2 as expected.

In order to show that these general features of the second-order perceptron do not depend
on the particular algorithm, we implemented the (higher-order) perceptron algorithm. In this
algorithm, the student vector changes infinitesimally, at each time step, according to the
following rule

Wi
′ = Wi + η(1)ytxiθ(−yyt )

Yij
′ = Yij + η(2)xixj θ(−yyt )

whereη(1) andη(2) are called the learning rate parameters. For the sake of simplicity we
do not normalize the weights and letη(1) = η(2) = 1.

This algorithm indeed exhibits this cascade-like learning behaviour. We present the
learning curve of a fully realizable case in figure 3, whereN = 20 andγ2 = γ t2 = 1√

2
. As

predicted by theory,R1 rises first in the ‘first-order regime’ andR2 approaches 1 only after
order ofN2 examples available. This crossover in behaviours is less prominent ineg due
to the fact thatN is only 20.

Before we close this section, we present the results for generic higher-order perceptrons.
For anmth-order perceptron learning from a teacher, (13), the free energy as a function of
order parameters becomes

〈〈lnZ〉〉 =
m∑
k=0

dk

2

[
qk − R2

k

1− qk + ln(1− qk)
]

+2p
∫ ∞

0
Dz
∫

Dt ln

[
e−β + (1− e−β)H

(√
q − R2t − Rz√

1− q

)]
where

q =
m∑
k=0

γ 2
k qk

R =
m∑
k=0

γkγ
t
kRk

and

qk = 1

dk

〈〈∑
w
(k)
i1,...,ik

w
(k)
i1,...,ik

〉〉
Rk = 1

dk

〈〈∑
w
t,(k)
i1,...,ik

w
(k)
i1,...,ik

〉〉
.

Againm� N has been assumed. By extremizing the free energy over the order parameters,
one obtains a cascade-like learning curve, as in the second-order perceptron, in which each
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Figure 3. Learning curve of a second-order perceptron withN = 20. The second-order
perceptron algorithm is used withη(1) = η(2) = 1. The overlap order parameters,R1 (♦) and
R2 (�), grow significantly in different scales ofp, as explained in the text. The generalization
erroreg (◦) approaches zero in the limit of infinite training examples,p→∞. The weights are
not normalized in this simulation unlike in the rest of the paper. Each data point is an average
over 1000 runs.

weight space component is constrained sequentially as the number of examples increases.
Near-perfect learning occurs only after order ofdm examples are used for training, at which
point the residual error decreases as 1/p [17].

5. Conclusion

We have calculated the storage capacity and the learning curve of the higher-order perceptron
using Gardner’s statistical mechanics approach [15]. One of the most interesting properties
of the higher-order perceptron is that its effective order can be made tunable, that is, the
storage capacity and the complexity of the learnable rules can be varied with the control
parameters,γ ’s. This particular model of higher-order perceptrons is different from those
considered by other authors, for instance, [6].

We have found that the storage capacity is a continuously varying function of the tuning
parameters of different order monomial terms. What these parameters do is essentially
change therelative volume of the phase-space component corresponding to each monomial
class of weights.

We have also shown that, when the finite-temperature Gibbs algorithm is used for
training, the higher-order perceptron exhibits stepwise or cascade-like learning as a function
of the number of training examples. This is due to the fact that the number of examples
required to constrain each monomial component of the phase space scales differently with
the system size. As we mentioned earlier, this mode of using higher-order perceptrons fits
naturally with the conventional paradigm in statistics, namely, polynomial curve fitting [12].

One of the major obstacles in using higher-order networks in practical applications, is
their combinatorial explosion in terms of the number of free parameters. This problem can
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be overcome in various ways. One obvious possibility is diluting weights [5, 24, 25] either
randomly or systematically until the optimal complexity is obtained. Diluted networks can
still learn higher-order correlations in patterns, which is not possible for the lower-order
networks. The so-calledsupport vector machinesare based on similar ideas, but do not
suffer from the curse of dimensionality [13]. The invariance constraint can also be directly
programmed into higher-order networks, thereby reducing the number of independent
weights and the computational burden in terms of the required number of training examples.
Further research along this line may eventually make the higher-order unit a more attractive
alternative to the conventional first-order neuron by simultaneously improving performance
and reducing computational cost.
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